## Electrostatic Risk

## Decisions Under Uncertainty

## Mark Hogsett

Novx Corporation

## Presentation Outline

1. Introduction
2. The Monty Hall Problem
3. Basic Risk Assessment
4. Risk Segmentation
5. Conclusion

## 1. Introduction

- It has been estimated that $\$ 84$ billion per year goes to corporate costs associated with ESD*.
- It has been estimated that average product loss to ESD is 8-33\%*.
- Why are corporations absorbing this amount of continual risk?
*source ESDA


## Introduction

- Utility theory has an extensive literature on how humans make decisions about gain and loss differently.
- Everyone makes decisions based upon informal probability assessments every day for almost every activity.
- Unfortunately, critical decisions are often dealt with informally as well.
- In addition, many decisions are subject to competition for resources or just plain inattention.


## 2. The Monty Hall Problem



Brand new car or brand new goat?

## Decision Time



Let's say you choose Door \#1...

## More Decisions...



Monty shows a goat behind door \#3 and asks if you would like to choose again...?

## And the winner is...

$N_{\text {Norx }}$

If you chose again, you probably chose correctly!

When you initially chose door \#1, you had a $1 / 3$ chance of guessing correctly and a $2 / 3$ chance of guessing incorrectly.

By choosing again, the odds are in your favor granting that you probably chose wrongly to start with.

## 3. Basic Risk Assessment

- Formal risk is usually defined as the probability of an event or condition and the expected consequences:

```
Risk}=\mp@subsup{P}{\mathrm{ robability }}{}\times\mp@subsup{C}{\mathrm{ orsequences }}{}\quad\mp@subsup{T}{\mathrm{ otal }}{\mathrm{ Risk }
```

- Typically, expected consequences are characterized as functions of gain or loss.
- The basic mathematics is fairly straightforward.
- However, the determination of event probability and consequence values can be quite challenging.


## Basic Risk

Risk $=$ Prob $\times$ Loss


## Determining Probabilities

- Probability of electrostatic problems in your manufacturing process?
- addressed with an ESC program, yield data, FA...
- Probability that defective product is being shipped?
- addressed with inspection/quality control programs
- Probability that defective product will cause significant after-manufacturing losses, etc.?
- varies by product type and customer expectation


## Gambler's Fallacy

- People are prone to the belief that events are naturally spaced by their probability frequency.
- This fallacy appears in gambling as the belief that events are more or less likely to occur than they are.
- Example: Fair coin toss

It is possible to flip 9 heads in a row, even though we know that the probability is 0.5 for heads, and 0.5 for tails.

## Coin Toss Probability

- Example: How many times do you have to flip a coin to get 10 heads?
- A Binomial probability at 0.5 is 25 times, but with a credible interval of 18 to 34 times.



## Finding Loss Utilities

- Calculating manufacturing loss (materials, time lost, sales, etc.)
- Calculate yield loss from product testing (failure rates)
- Estimated loss for rare events (what if scenarios)
- Total loss summed across all risks


## 3. Risk Segmentation

Risk, and the decisions associated with it, are distributed across any organization:

- manufacturing processes
- quality control (or lack thereof)
- management decision process
- sales/marketing
- unforeseen events
- unlikely events


## Manufacturing ESD Risk

Failures:
Manufacturing ESD Losses
Model 1, 25/10000
Model 2, 200/10000

Loss is $\$ 30$ for all costs associated per failure.

Failure rate assumes complete testing of
 all devices.

## After-Manufacturing Risk

Same device failure models.

Loss is now greater and calculated at $\$ 200$ per failed device.

Some products
have enormous loss potential.

After-Manufacturing ESD Failure


## Decision Competition

You have \$100k in your engineering budget:

1) Do you use it to create/enhance an ESC program?
2) Do you use it for other projects?
3) You think you know your risk probabilities...
4) You have several estimated loss models, including a worst-case scenario...

## Decision Scenario \#1

a) You think there is a $95 \%$ chance that the money is better spent on non-ESC expenditures:

$$
P(0.95) \times \$ 100 k=\$ 95 k \text { Gain }
$$

b) You think that the chance of ESD losses are $<5 \%$ and would be limited to about \$100k.

$$
P(0.05) \times \$ 100 k=\$ 5 k \text { Loss }
$$

Risk $=(0.95 \times 100 k)+(0.05 \times 100 k)=\$ 90 k$ Gain

## Decision Scenario \#2

a) You think there is a $95 \%$ chance that the money is better spent on non-ESC expenditures:

$$
P(0.95) \times \$ 100 k=\$ 95 k \text { Gain }
$$

b) You think that the chance of ESD losses are $<5 \%$ and would be limited to about \$4M.

$$
P(0.05) \times \$ 10 M=\$ 200 k \text { Loss }
$$

Risk $=(0.95 \times 100 k)+(0.05 \times 4 M)=\$ 105 k$ Loss

## Catastrophic Risk

- Most ESD risks don't make it very far into the catastrophic loss category (with several exceptions*).
- If you run the normal calculation for a very small probability and a very large loss, you have to be careful.
- Example: $\$ 100 \mathrm{M}$ potential loss $x$ P(0.001) $=\$ 100 K$ Loss
- These scenario-based loss estimates are actually better modeled as threshold functions. If the event happens, the full loss is expected.
*semiconductor reticles


## A Decision Hero

Col. Stanislav Petrov, Soviet Missile Command, Moscow

September 26, 1983, 12:04pm...

At the height of the Cold War...

His decision under uncertainty and extreme stress is quite possibly the reason we are all here today.

## 5. Conclusion

- Formal risk analysis leads to better decisions.
- If you control the probabilities for electrostatic variables, you control the risks.
- Even though rare events seem distant, they do occur.
- The risk is yours...

Thank you.

