

Electrostatic Risk

Decisions Under Uncertainty

Mark Hogsett

Novx Corporation

www.novxcorp.com

Presentation Outline

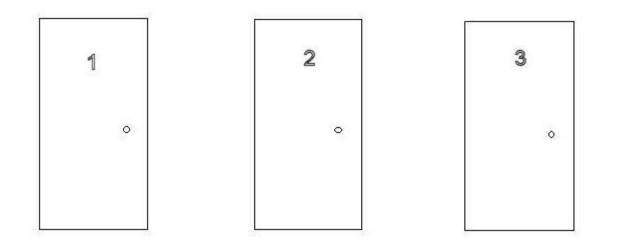
- 1. Introduction
- 2. The Monty Hall Problem
- 3. Basic Risk Assessment
- 4. Risk Segmentation
- 5. Conclusion

1. Introduction

- It has been estimated that \$84 billion per year goes to corporate costs associated with ESD*.
- It has been estimated that average product loss to ESD is 8-33%*.
- Why are corporations absorbing this amount of continual risk?

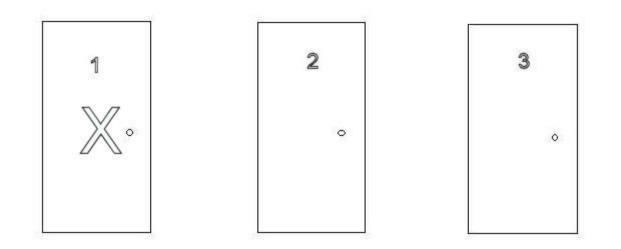
*source ESDA

Introduction



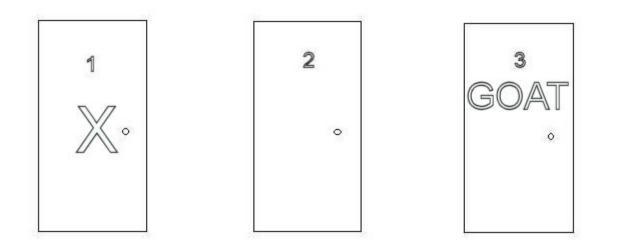
- Utility theory has an extensive literature on how humans make decisions about gain and loss differently.
- Everyone makes decisions based upon informal probability assessments every day for almost every activity.
- Unfortunately, critical decisions are often dealt with informally as well.
- In addition, many decisions are subject to competition for resources or just plain inattention.

Novx


2. The Monty Hall Problem

Brand new car or brand new goat?

Decision Time



Let's say you choose Door #1...

More Decisions...

Monty shows a goat behind door #3 and asks if you would like to choose again...?

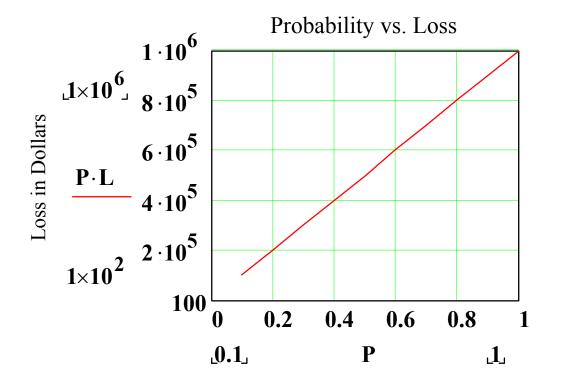
And the winner is...

If you chose again, you probably chose correctly!

When you *initially* chose door #1, you had a 1/3 chance of guessing correctly and a 2/3 chance of guessing incorrectly.

By choosing again, the odds are in your favor *granting that* you probably chose wrongly to start with.

3. Basic Risk Assessment



- Formal risk is usually defined as the probability of an event or condition and the expected consequences:
 R_{isk} = P_{robability} x C_{onsequences} T_{otal}R_{isk} = sum of R_{isks}
- Typically, expected consequences are characterized as functions of gain or loss.
- The basic mathematics is fairly straightforward.
- However, the determination of event probability and consequence values can be quite challenging.

Basic Risk

Risk = Prob x Loss

Probability of Event

Determining Probabilities

• Probability of electrostatic problems in your manufacturing process?

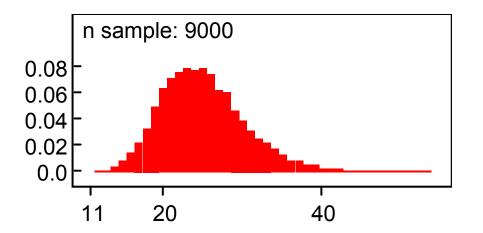
- addressed with an ESC program, yield data, FA...

- Probability that defective product is being shipped?
 addressed with inspection/quality control programs
- Probability that defective product will cause significant after-manufacturing losses, etc.?

- varies by product type and customer expectation

Gambler's Fallacy

- People are prone to the belief that events are naturally spaced by their probability frequency.
- This fallacy appears in gambling as the belief that events are more or less likely to occur than they are.
- Example: Fair coin toss


It is possible to flip 9 heads in a row, even though we know that the probability is 0.5 for heads, and 0.5 for tails.

Coin Toss Probability

- Example: How many times do you have to flip a coin to get 10 heads?
- A Binomial probability at 0.5 is 25 times, but with a credible interval of 18 to 34 times.

Finding Loss Utilities

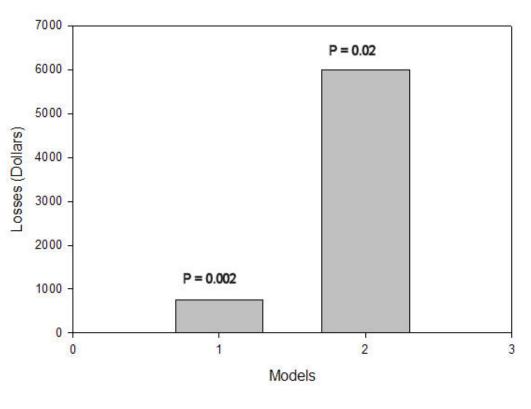
- Calculating manufacturing loss (materials, time lost, sales, etc.)
- Calculate *yield loss* from product testing (failure rates)
- Estimated loss for rare events (what if scenarios)
- Total loss summed across all risks

3. Risk Segmentation

Risk, and the decisions associated with it, are distributed across any organization:

- manufacturing processes
- quality control (or lack thereof)
- management decision process
- sales/marketing
- unforeseen events
- unlikely events

Manufacturing ESD Risk



Failures:

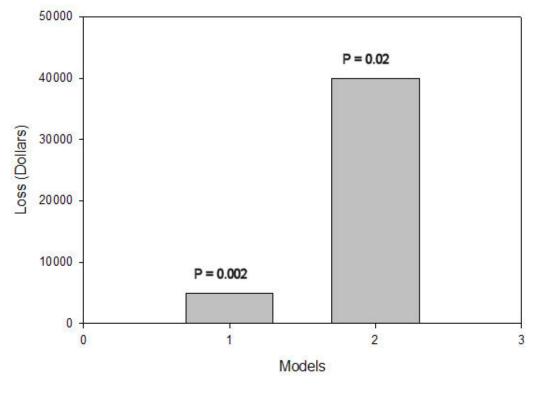
Model 1, 25/10000 Model 2, 200/10000

Loss is \$30 for all costs associated per failure.

Failure rate assumes complete testing of all devices.

Manufacturing ESD Losses

After-Manufacturing Risk



Same device failure models.

Loss is now greater and calculated at \$200 per failed device.

Some products have enormous loss potential.

After-Manufacturing ESD Failure

Decision Competition

You have \$100k in your engineering budget:

- 1) Do you use it to create/enhance an ESC program?
- 2) Do you use it for other projects?
- 3) You think you know your risk probabilities...
- 4) You have several estimated loss models, including a worst-case scenario...

Decision Scenario #1

a) You think there is a 95% chance that the money is better spent on non-ESC expenditures:
 P(0.95) x \$100k = \$95k Gain

b) You think that the chance of ESD losses are <5% and would be limited to about \$100k.
 P(0.05) x \$100k = \$5k Loss

Risk = (0.95 x 100*k*) + (0.05 x 100*k*) = \$90*k* Gain

Decision Scenario #2

a) You think there is a 95% chance that the money is better spent on non-ESC expenditures:
 P(0.95) x \$100k = \$95k Gain

b) You think that the chance of ESD losses are <5% and would be limited to about \$4M.
 P(0.05) x \$10M = \$200k Loss

Risk = (0.95 x 100*k*) + (0.05 x 4*M*) = \$105*k* Loss

Catastrophic Risk

- Most ESD risks don't make it very far into the catastrophic loss category (with several exceptions*).
- If you run the normal calculation for a very small probability and a very large loss, you have to be careful.
- Example: \$100M potential loss x P(0.001) = \$100K Loss
- These scenario-based loss estimates are actually better modeled as threshold functions. If the event happens, the full loss is expected.

*semiconductor reticles

A Decision Hero

Col. Stanislav Petrov, Soviet Missile Command, Moscow

September 26, 1983, 12:04pm...

At the height of the Cold War...

His decision under uncertainty and extreme stress is quite possibly the reason we are all here today.

5. Conclusion

- Formal risk analysis leads to better decisions.
- If you control the probabilities for electrostatic variables, you control the risks.
- Even though rare events seem distant, they do occur.
- The risk is yours...

Thank you.