
Electrostatic Measurement Issues and **SEMI E43**

Maciej A. Noras Trek, Inc.

Overview

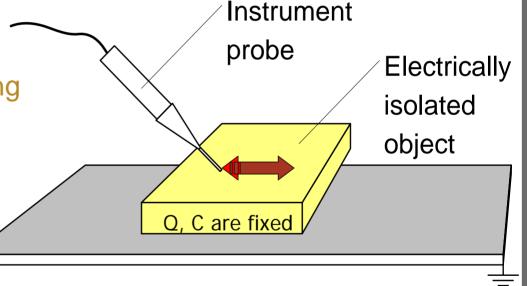
- General comments on electrostatic measurements and measurement methods.
 - Charge, voltage and electric field
 - Measuring charge coulombmeter and Faraday cup
 - Measuring voltage electrostatic voltmeters
 - Measuring electric field electrostatic fieldmeters
 - lonizer measurements charged plate monitor
- Review of E43 0301
 - what it contains
 - what areas are in need of review and additions

Why measure charge?

- Charge measurement may serve as semiconductor characterization tool
- Measurements in semiconductor manufacturing:
 - Electrostatic discharge (ESD) hazard detection
 - integrated circuits, reticles

Why measure charge (cont.)?

- ESD may also cause an electromagnetic interference (EMI) problems
 - Equipment process interruption
- Prevent contamination via electrostatic attraction
 - Wafers, flat panel displays (FPD)
- Restrict damage due to field induced migration of material
 - Wafers

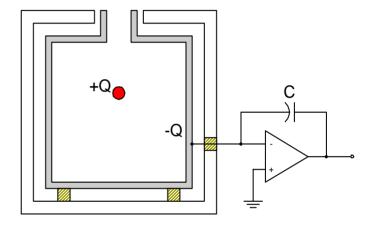

How to measure charge?

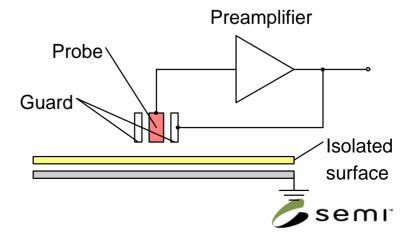
 Measurements in electrostatic systems require very high input impedance of the measuring instrument:

Charge is limited,

 Electrical state of the measured object has to be preserved.

 Input impedance of the meter has to be much higher than that of the object being measured.


High input impedance techniques

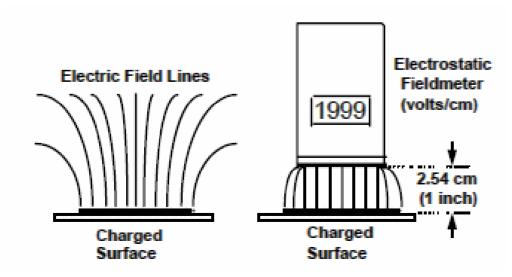

- Non-contacting methods:
 - Lack of physical contact assures that the input impedance is high

nstruments:

- The Faraday cup (pail),
- Fieldmeters,
- Induction probes,
- Electrostatic voltmeters
- Contacting methods:
 - Electrometers

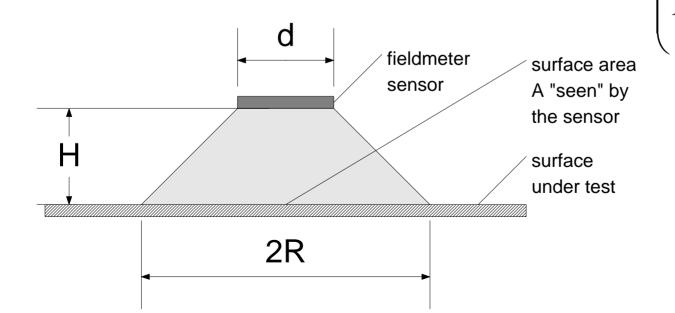
Charge measurement techniques in E43 - Coulombmeter

- Technique allowing for direct measurement of the charge
- Not always convenient and/or feasible
- Measures the net charge


$$Q = C \cdot V$$

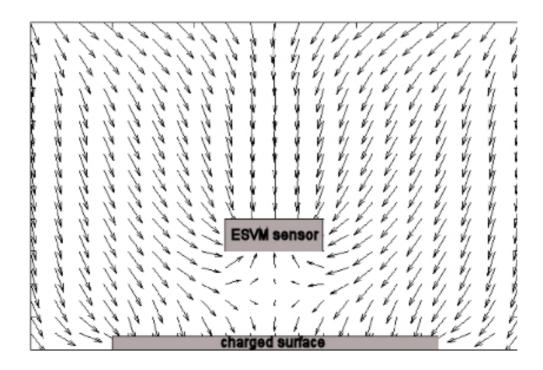
Fieldmeter measurements

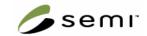
- Measures electric field E
- Need to know the object-to-ground capacitance C
- Charge Q can be calculated
- Spatial resolution not too good


$$Q = C \cdot E \cdot d$$

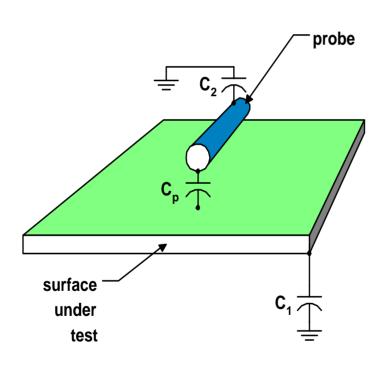
Fieldmeter measurements, cont.

- If the capacitance is not known, the surface charge still can be theoretically approximated (assuming uniform distribution): $O = \frac{2\varepsilon_0}{\varepsilon_0}$





Electrostatic voltmeter measurements


- Measures voltage
- Good spatial resolution

$$Q = C \cdot V$$

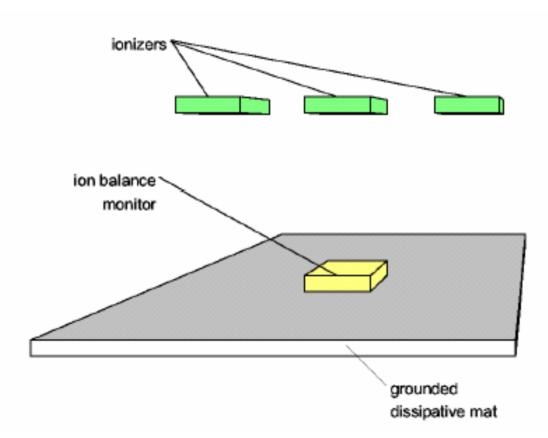
Electrostatic voltmeter measurements, cont.

$$V = V_{surface} = V_{probe}$$

$$V = \frac{Q}{C_1 + C_p}$$

Comments on field and voltage measurements

Table 1 – Recommended Equipment Electrostatic Levels


Year Node	Electrostatic Discharge, nC	Electrostatic Field, V/cm V/inch	
2000 180 nm	2.5–10	200	500
2002 130 nm	2.0	150	375
2003 100 nm	1.5	125	300
2004 90 nm	1.0	100	250
2006 70 nm	0.6	80	200
2007 65 nm	0.5	70	175
2009 50 nm	0.3	55	140
2010 45 nm	0.25	50	125
2013 32 nm	0.125	35	88
2015 25 nm	0.08	28	70
2018 18 nm	0.04	20	50

Recommended
equipment electrostatic
levels in E78 are based
on 10 pF capacitance

Other measurements included in E43

Test of balance of an ionizer

Proposed changes to E43

- Change in the title and scope (much broader: electrostatic measurements instead of electrostatic charge measurements)
- "Performance verification" moved to "measurement" section
- New related information sections with examples

Conclusions

- E43 should become a charge measurement guide referenced by other SEMI standards (E78, E129).
- Your feedback in that matter is very much needed and appreciated!
- Please participate in the E43 review process, meeting of the EOS/ESD TF on Tue., Oct. 17, 1:30-4:30 p.m.

