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Setting the Stage

• Wafer level ESD damage has long been a mystery
• Investigators lacked tools to detect events in situ
• Often yields were low and any ESD was masked by other 

handling-induced errors
• Early robotic equipment was more sensitive than the wafers
• Electrostatic attraction (ESA) emerged as the more 

significant problem
• Some ESA mitigation techniques probably also reduce ESD 

risk
• ESD vulnerability very dependent on specific wafer 

construction
• Attitudes range widely from indifference to serious concern
• Little being done, few actual investigations
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Some Prior Work

• Early processing at AT&T (1970-1980) – Failures at wafer 
level a major problem

• Burr Brown (1991 EOS/ESD Symposium) - “streaming 
potential” causes ESD damage at wafer rinse

• Seagate (1998 EOS/ESD symposium) – Damage to MR 
Heads at Ion Milling (not really ESD but vulnerabilities may 
be similar)

• Jacob & Nicoletti (2006 IEEE Trans Dev Mat Rel) – Allude to 
ESD damage “directly to chip surface”
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Some Prior Work

• Infineon (2006 EOS/ESD Symposium) - claim no 
damage at wafer saw

• Infineon 2007 Future-Fab article – On-going 
efforts to eliminate ESD events driven by fear of 
device damage but no direct evidence cited

• Damage at wafer saw – Direct experience
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Wafer Saw ESD 
Events

Wafer Saw 6351 – CO2 bubbler 
on

Wafer Saw 6351 – CO2 bubbler 
off

Events captured by ESD event 
detector
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ESD Threshold Populations including high speed 
applications

ESD Populations including high speed 
applications
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Wafer Level ESD Model

• Details of the Model
• Results
• Limitations and Improvements
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Objectives
• Create a framework for predicting voltage levels on 

wafers due to ESD in the front-end environment
• Estimate how geometric changes in wafer 

construction affect ESD vulnerability
• Identify processing and feature scale information 

needed to improve estimates

Strategy
• Develop a computer model for typical wafer-level 

ESD event
• Base model on a charged-device model (CDM) 

scenario (wafer grounded in a static field)

Wafer-Level ESD Model
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Charged Device Model
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FCDM Simulator
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Model Description
• Integrated Wafer-Simulator CDM Model

– Wafer modeled as an array of capacitances with respect to  
the field source

• Technology evolution related to this capacitance variation
– Feature-to-feature and feature-to backside capacitances are 

small and neglected for this analysis
– Feature-to-feature potential differences used as an indicator 

of device failure
– Thermal effects were not considered since any significant 

heating would be on back side of wafer well away from 
sensitive features

• Changes to new materials (e.g., ZrO2) are not included

• The following lumped-elements were used in 
circuit model for the CDM generator 
– Nonlinear arc resistance
– Ground probe inductance
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Wafer ESD Model Schematic

Field plate at V 

Arc model, I(t)- Includes  
inductance

Small features Large bus

Bulk resistance

V(t)

surface resistance

small cap large cap

neglected

neglected
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Modeling sequence
• Field plate (simulating charged source near wafer) is 

charged to the desired stressing voltage
– This causes the entire wafer to rise or fall to the desired stressing 

potential
• A simulated grounded probe is then placed into electrical 

contact (through an arc) with the backside of the wafer to 
simulate a typical wafer handling electrostatic event

• The metal islands (capacitors) on the front side  then 
discharge through the underlying silicon substrate

• The quasi-steady-state static potential and the electric field 
are then computed as functions of position and time while 
the simulation proceeds

• Voltage potentials develop between the metal islands with 
the highest potentials typically between neighboring 
islands with different capacitances
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Failure Mechanism

• A fast transient leads to voltage potential between 
features

• Sufficiently high voltage for sufficient duration 
initiates Fowler-Nordheim (F-N) tunneling*

• Failure occurs when cumulative charge trapping 
exceeds a certain level defined as Qbd

*See S. Sze, Physics of Semiconductor Devices, 
Second Edition, p497.
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Failure Model
• For 5 kV ESD event, peak ΔV is 50-250 volts across top side chip 

features.
• This ΔV may appear across thin gate oxide.
• F-N tunneling current density (J)  given by
• Total charge density deposited into gate oxide during FCDM 

event given as  σox = ∫J(t)dt. 
• For FCDM event, duration is brief, but J is large.
• If σox > Qbd, gate oxide fails irreversibly.
• This could cause failure of MOSFETs internal to DUT, not 

necessarily in I/O regions – more difficult to detect.
• Detection of such failures depends upon vector set fault 

coverage. Failure would appear as a hard functional failure, not
necessarily as a parametric leakage failure

)/exp( 2
2

1 EcEcJ −=
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Ignoring Inter-feature Capacitance

• For this model, inter-feature capacitances are 
paralleled by inter-feature resistance of 1/(g*mesh 
spacing).  This resistance is about 0.8 ohm.

• Consider a 0.8 ohm resistor in parallel with an inter-
feature capacitor of 0.1 pF. Compare resistor 
conduction current (ΔV/R) & capacitor displacement 
current (Cdv/dt).

• For 5 kV event, peak Icond = 25 A.;   peak Idis=0.4 A.
• Conduction current dominates capacitor 

displacement current.  So, we’ve ignored inter-feature 
capacitance.

• Addition of inter-feature capacitance to model is 
always possible at client request.
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Simulation Runs

• Variables explored
– Large and small capacitance values
– Bulk wafer conductivity
– Back surface conductivity
– Stressing voltage
– Zap location

• Fixed quantities
– Wafer thickness
– Feature spacing
– Arc model with fixed voltage/length
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Typical waveform

Current waveform
5000 volt
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Typical wafer potential 
difference distributions

Difference in potential from zap point
5000 volt zap
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Results summary plots
maximum potential difference vs small feature cap
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Summary and Conclusions

• Changes in relative capacitance with respect to 
charge source of neighboring features could have 
significant effect on voltage differentials between 
features on a die

• Maximum voltage potentials appear for ~100 
picoseconds at or near the time of current peak and 
at point of larger capacitance 

• Maximum feature-to-feature potentials roughly 
scale with zap voltage
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Summary and Conclusions
(cont.)

• Need to relate small-to-large capacitance range to 
technology evolution

• Failures would be difficult to detect based on 
current test techniques since they would be 
internal, depend on test coverage

• Status:  These results suggest that relatively high 
voltages can be developed on wafer-like structures.  
Further work is required to firmly establish the 
“calibration” of the results using actual Qbd, 
capacitances and conductivities
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