Electrostatic Measurement Issues and **SEMI E43**

Maciej A. Noras Trek, Inc.

Overview

- General comments on electrostatic measurements and measurement methods.
 - Charge, voltage and electric field
 - Measuring charge coulombmeter and Faraday cup
 - Measuring voltage electrostatic voltmeters
 - Measuring electric field electrostatic fieldmeters
- Review of E43 0301
 - what it contains
 - what areas are in need of review and additions
 - what has been done so far

Why measure charge?

- Charge measurement may serve as semiconductor characterization tool (work function of materials, mobile charge density, doping density, etc.)
- Measurements in semiconductor manufacturing:
 - Electrostatic discharge (ESD) hazard detection
 - integrated circuits, reticles

Why measure charge (cont.)?

- ESD may also cause an electromagnetic interference (EMI) problems
 - Equipment process interruption
- Prevent contamination via electrostatic attraction
 - Wafers, flat panel displays (FPD)
- Restrict damage due to field induced migration of material
 - Wafers
 - Reticles

How to measure charge?

- Measurements in electrostatic systems require very high input impedance of the measuring instrument:
 - Charge is limited,
 - Electrical state of the measured object has to be preserved.
- Input impedance of the meter has to be much higher than that of the object being measured.

High input impedance techniques

- Non-contacting methods:
 - Lack of physical contact assures that the input impedance is high

- nstruments:
 - The Faraday cup (pail) with a coulombmeter,
 - Fieldmeters,
 - Induction probes,
 - Electrostatic voltmeters
- Contacting methods:
 - Electrometers

semi

Charge measurement techniques in E43 - Coulombmeter

- Technique allowing for direct measurement of the charge – use of coulombmeter/electrometer
- Not always convenient and/or feasible
- Measures the net charge

 $Q = C \cdot V$

Fieldmeter measurements

- Measures electric field E
- Need to know the object-to-ground capacitance C
- Charge Q can be calculated
- Spatial resolution not too good

$$Q = C \cdot E \cdot d$$

Arc-over hazard if the meter is too close to the measured object

Fieldmeter measurements, cont.

 If the capacitance is not known, the surface charge still can be theoretically approximated (assuming uniform distribution):

Fieldmeter measurements, cont.

Electric field lines

Electrostatic voltmeter measurements

- Measures voltage, not field. Field can be calculated, if necessary
- Good spatial resolution
- No arc-over hazard, the sensor is at the potential of the measured surface

 $Q = C \cdot V$

Electrostatic voltmeter measurements, cont.

$$V = V_{surface} = V_{probe}$$

$$V = \frac{Q}{C_1 + C_p}$$

Electrostatic voltmeter measurements, cont.

Equipotential lines

Comments on field and voltage measurements

Table 1 – Recommended Equipment Electrostatic Levels

Year Node	Electrostatic Discharge, nC	Electrostatic Field, V/cm V/inch	
2000	2.5–10	200	500
180 nm			
2002	2.0	150	375
130 nm			
2003	1.5	125	300
100 nm			
2004	1.0	100	250
90 nm			
2006	0.6	80	200
70 nm			
2007	0.5	70	175
65 nm			
2009	0.3	55	140
50 nm			
2010	0.25	50	125
45 nm			
2013	0.125	35	88
32 nm			
2015	0.08	28	70
25 nm			
2018	0.04	20	50
18 nm			

Recommended equipment electrostatic levels in E78 are based on 10 pF capacitance

Proposed changes to E43

- Change in the title and scope (much broader: electrostatic measurements instead of electrostatic charge measurements)
- New section added: "Electrostatic discharge measurements"
 - Describes methods and instrumentation for the discharge measurements
- Structure changes, i.e. "Performance verification" of instrumentation moved to "Measurement" section
- New related information sections with examples

Related information – new additions

- Electric field, voltage and charge
 - discussion of generalized cases for the charge, electric field and voltage measurements on flat surfaces
 - advantages and disadvantages of each of the test methods
- Correlation between electric charge, electric field, and electric potential
 - basic information on dependencies between field, voltage and charge

Conclusions

- E43 should become a charge measurement guide referenced by other SEMI standards (E78, E129).
- Your feedback in that matter is very much needed and appreciated!
- Please participate in the E43 review process, meeting of the EOS/ESD TF on Tue., March 6th, 1:30-4:30 p.m.

